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Abstract. Automatic speaker localization is an important task in several
applications such as acoustic scene analysis, hands-free videoconferencing
or speech enhancement. Tracking speakers in multiparty conversations con-
stitutes a fundamental task for automatic meeting analysis. In this work,
we present the acoustic Person Tracking system developed at the UPC for
the CLEAR’07 evaluation campaign. The designed system is able to track
the estimated position of multiple speakers in a smart-room environment.
Preliminary speaker locations are provided by the SRP-PHAT algorithm,
which is known to perform robustly in most scenarios. Data association
techniques based on trajectory prediction and spatizal clustering are used
to match the raw positional estimates with potential speakers. These posi-
tional measurements are then finally spatially smoothed by means of
Kalman filtering. Besides the technology description, experimental results
obtained on the CLEAR’07 CHIL database are also reported.

1 Introduction

The automatic analysis of meetings in multisensor rooms is an emerging research
field. In this domain, localizing and tracking people and their speaking activity
play fundamental roles in several applications, like scene analysis, hands-free
videoconferencing or speech enhancement techniques.

Many approaches to the task of acoustic source localization in smart envi-
ronments have been proposed in the literature. The main differences between
them lie in the way they gather spatial clues from the acoustic signals, and
how this information is processed to obtain a reliable 3D position in the room
space. Spatial features, like the Time Difference of Arrival (TDOA) [8] between
a pair of microphones or the Direction of Arrival (DOA) to a microphone array,
can be obtained on the basis of cross-correlation techniques [I], High Resolution
Spectral Estimation techniques [3] or by source-to-microphone impulse response
estimation [2].

Conventional acoustic localization systems include a tracking algorithm that
smoothes the raw positional measurements to increase precision. Furthermore,
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the localization of multiple speakers simultaneously becomes severely compli-
cated due to speech overlap of participants, since the localization techniques
based on the cross-correlation like TDOA estimation assume one impinging
wavefront. The task becomes specially difficult in the case of multiple mo-
ving speakers. Prior research on speaker tracking usually deals with a single
speaker [10], however recently, multispeaker tracking [11] using Kalman [4] and
particle [I3] filtering techniques has gained interest in the context of smart meet-
ing rooms.

The UPC acoustic localization system proposed in this work is based on the
SRP-PHAT [5] localization method. The SRP-PHAT, algorithm although being
very robust in reverberant environments, is not very well suited for the case
of multiple concurrent speakers. The PHAT weighting introduces a masking
effect of dominant acoustic sources over other sources of sound. This is desirable
for increasing the robustness of the localization system by masking multipath
acoustic propagation and reverberation, but it also hinders the localization of
multiple acoustic sources. However, in the case of using a short analysis window
(~23ms), we have observed that the positional estimates produced by the SRP-
PHAT jump from one speaker to another at a very high rate due to the non-
stationarity of the voice.

In our work we use a multiperson tracker based on the Kalman filter, which
models a simple Newtonian motion of the source. The tracker carries out the
tasks of detecting potential acoustic sources using spatial clustering and also
assigning the raw location estimates to their corresponding speaker tracks us-
ing data association techniques. Then the measures assigned to each individual
track are spatially smoothed by means of the corresponding Kalman filter [12],
acording with the measure error variance estimation method defined in the next
section.

2 Acoustic Source Localization

The SRP-PHAT algorithm [5] tackles the task of acoustic localization in a robust
and efficient way. In general, the basic operation of localization techniques based
on SRP is to search the room space for a maximum in the power of the received
sound source signal using a delay-and-sum or a filter-and-sum beamformer. In
the simplest case, the output of the delay-and-sum beamformer is the sum of
the signals of each microphone with the adequate steering delays for the position
that is explored. Concretely, the SRP-PHAT algorithms consists in exploring the
3D space, searching for the maximum of the contribution of the PHAT-weighted
cross-correlations between all the microphone pairs. The SRP-PHAT algorithm
performs very robustly due the the PHAT weighting, keeping the simplicity of
the steered beamformer approach.

Consider a smart-room provided with a set of N microphones from we choose
M microphone pairs. Let x denote a R? position in space. Then the time delay
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of arrival TDOA; ; of an hypothetic acoustic source located at x between two
microphones 4, j with position m; and my; is:

rpoa,, = = lxm | "
where s is the speed of sound.

The 3D room space is then quantized into a set of positions with typical
separation of 5-10cm. The theoretical TDOA 7 ; j from each exploration position
to each microphone pair are precalculated and stored.

PHAT-weighted cross-correlations [I] of each microphone pair are estimated
for each analysis frame. It can be expressed in terms of the inverse Fourier
transform of the estimated cross-power spectral density (G, m,(f)) as follows,

) = e Gmbm](f) 27 fr
Runim, ( )—/_DO |Gmimj(f)|e] df, (2)

The estimated acoustic source location is the position of the quantized space
that maximizes the contribution of the cross-correlation of all microphone pairs:

X = argmax Z Roim; (Txjig)s (3)
* ijes

where S is the set of microphone pairs. The sum of the contributions of each
microphone pair cross-correlation is assumed to be well-correlated with the like-
lihood of the estimation given. Hence, this value is compared to a fixed threshold
(depending on the number of microphone pairs used) to reject/accept the estima-
tion. The threshold has been experimentally fixed to 0.5 for each 6 microphone
pairs. It is important to note that in the case of concurrent speakers or acoustic
events, this technique will only provide an estimation for the dominant acoustic
source at each iteration.

3 Multiple Speaker Tracking

One of the major problems faced by acoustic tracking systems is the lack of a
continuous stream of features provided by the localization module. Moreover, in
the case of spontaneous speech, we have to deal with acoustic events that are
sporadic and others that are concurrent.

The proposed method makes use of spatial segmentation to detect tracks and
associate incoming raw estimates to them. Each tracked acoustic source has an
associated acceptance region and a Kalman filter. When a raw estimate falls
within a region of a track, it is asigned to that track and then used by the
Kalman filter. If no measurement falls within this acceptance region, then the
predicted position is used as the measurement for the Kalman filter.

We have no constraint on the number of acoustic sources that the algorithm
is able to track. The method dynamically estimates the number of sources based
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on a birth/death system. The track detection uses a spatial segmentation algo-
rithm to group locations that are close to each other in space and time. When
a minimum number of locations IV, are found in a space region over a defined
time window T3, the tracking system decides it is a new track. Similarly, if a
track does not have any measurements that fall within its acceptance region for
a given amount of time T, then the track is dropped. The ratio between T} and
Np used in the track detection module is a design parameter. It must be high
enough to filter out noises and outliers, but also not too high in order to be able
to detect sporadic acoustic events. In our experiments Ny, is set to 4, Ty, is 460ms
and Ty is also 460ms.

3.1 Kalman Filter

The Kalman filter [I2] has been widely used in tracking applications.
The motion of a specified talker is modelled by a simple Newtonian model
defined by the state difference equation:

Sk+1 = ¢rsk + Lpwy, 4)

where sj is the system state, ¢ is the transition matrix that propagates the
state, wy, is the process noise vector and I'y, is the gain matrix.

In this work we have chosen the state, as a 6-component vector consisting in
the 2-dimensional source position, velocity and acceleration:

sk =[xk yr in g i ik (5)

The process noise vector, Wy, = [wy  wy )7, whose components are uncorre-
lated, zero-mean Gaussian variables with equal variance oy, is used to model
variations in the acceleration of the source motion. The transition matrix ¢ and
the gain matrix I' are defined by:

I, Atl, 20T,

p=10 I, Al |, (6)
0, 02 Ip
3 2 T
r= (4L 4'nam ) (7)

where At is the time period between positional measures provided by the loca-
lization system, Io is the identity matrix and Oq is a zero matrix.

In the other hand, the source positional observation at the k" iteration, z
is modelled in the conventional as the true 2D source position corrupted by the
measurement noise vy.

z;, = Hsp + vy. (8)

In this work, the measurement matrix is given by:

H = [I5|02/0,] . (9)
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The covariance matrix of the measurement noise Ry, = E v, v} | is calculated as
a function of the estimated source location, sensor position and environmental
conditions as proposed in [I4], where the error covariance of the localization
estimation is computed as a function of the variances of the TDOAs estimation
and a pure geometrical weight matrix:

1

R,=M"-v.-M) (10)
1
o2
A
o2
V= o : (11)
1
o2
N

where the weight matrix M [T4] models the sensitivity of the microphone array
at the estimated position of the speaker and V is the diagonal matrix consisting
of the inverse of the TDOA variances 0'72_i at the microphone pair i. The figure [Tl
shows a simulation of the error variance for the rooms at UKA and UPC.

3
s-coordinats (m) *-coominate (m)

(a) UPC smartroom (b) UKA smartroom

Fig. 1. Simulation of the localization error variance at heigh= 1.7m for UPC and UKA
CHIL-Rooms. The brightness in the figure is related to the predicted error at a given
position. Brighter zones are more prone to localization errors.

The SRP-PHAT algorithm does not provide an estimation of the variance
of the time differences of arrival, because the TDOAs 7% ; ; are estimated in-
directly calculating the distance differences from the detected location of the
acoustic source to each microphone. The only measure available is the value of
the cross-correlation p = Ry, m; (7x,i,;) at each microphone pair. In principle,
lower values of the cross-correlation function should correspond with high vari-
ance TDOA estimation. Preliminary experimental results have led us to propose
an exponential function to model the relationship between p and o2 :
o2=e¢"5.4. (12)

T
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The parameter 6 must be set according with the microphone array configura-
tion, since microphones that are closer exhibit a higher cross-correlation. In our
work we have chosen § = 0.05 and 8 =5-107%.

3.2 Data Association

In situations dealing with multiple, possibly moving, concurrent speakers, the
purpose of the data association method is to assign raw location measures to a
specific acoustic source and also to filter out outliers that appear due to noise
and reverberation. This is done through the use of acceptance regions [I5]. The
acceptance region is a segment of the space around the position predicted by the
corresponding track. The region size is set dynamically according to the measure
noise variance and state estimation uncertainty:

(z—z,;)T~S,;1- (z—1z;) <~. (13)

The variable z defines the acceptance region in space, - is a fixed bound value
, Z;, is the source position predicted by the Kalman filter and Sy is the cova-
riance matrix of the positional observations, that can be formulated recursively
as follows:

Sy =H-P, -H” + Ry, (14)

where P, is a matrix provided by the Kalman filter, that predicts the error
covariance of the estimated state. A high value of the measure noise covariance
matrix Ry or a high uncertainty in the estimation of the state, for instance due
motion of the source, yields to a bigger acceptance region.

4 Evaluation

Audio Person Tracking evaluation is run on an extract of the data collected
by the CHIL consortium for the CLEAR 07 evaluation. The data consists of
meetings recorded at each partner site involving presentations and discussions.
A complete description of the data and the evaluation can be found in [7].

4.1 Summary of the Experimental Set-Up

Data Description. Room set-ups of the contributing sites present two basic
common groups of devices: the audio and the video sensors.

Audio sensors set-up is composed by 1 (or more) NIST Mark IIT 64-channel
microphone array, 3 (or more) T-shaped 4-channel microphone cluster and va-
rious table-top and close-talk microphones.
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Evaluation Metrics. Two metrics are considered for evaluation and compari-
son purposes:

Multiple Object Tracking Precision (MOTP) [mm] This is the precision of the
tracker when it comes to determining the exact position of a tracked person
in the room. It is the total Euclidian distance error for matched ground truth-
hypothesis pairs over all frames, averaged by the total number of matches
made. It shows the ability of the tracker to find correct positions, and is
independent of its errors in keeping tracks over time, estimating the numbers
of persons, etc.

Multiple Object Tracking Accuracy (A-MOTA) [%] This is the accuracy of the
tracker when it comes to keeping correct correspondences over time, estima-
ting the number of people, recovering tracks, etc. It is one minus the sum
of all errors made by the tracker, false positives, misses, over all frames, di-
vided by the total number of ground truth points. This metric is like the
video MOTA in which all mismatch errors are ignored and it is used to mea-
sure tracker performance only for the active speaker at each point in time for
better comparison with the acoustic person tracking results (where identity
mismatches are not evaluated).

4.2 Awudio Person Tracking Results

We have decided to use all the T-clusters available in the different seminars
and only to use the MarkIIl data for the sites (ITC, UKA and UPC). In gen-
eral, only microphone pairs of eather the same T-cluster or within the MarkIIl
array are considered by the algorithm. In the experiments where the MarkIIl
is used, 16 microphone channels are selected for GCC-PHAT computation The
pairs selected out of the MarkIIl are 42 in total, spanning an inter-microphone
separation of 16cm, 24cm, and 32cm. The number of microphones pairs used in
MarklIll is greater than those used of the T-Clusters, thus a corrective weight is
given to the MarkIII contribution to the SRP-PHAT algorithm in order to have
approximately the same importance as one T-Cluster

In Table [I individual results for each data set and average results for the
Acoustic Person Tracking tasks are shown. Notice that the average results are
not directly the mean of the individual results, since the scores are recomputed
jointly.

Table 1. Results for acoustic person tracking

Site MOTP  Misses False Positives A-MOTA
AIT data 20lmm  48.15% 8.17% 43.68%
IBM data 206mm  35.01% 18.09% 46.91%
ITC data 157mm  38.31% 38.97% 22.72%
UKA data 175mm  41.55% 22.56% 35.89%
UPC data 117mm  30.35% 13.69% 55.96%

Total Average 168Smm  37.86% 20.97% 41.17%
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Conclusions

In this paper we have presented the audio Person Tracking system developed by
UPC for the CLEAR evaluation campaign. A method for estimating the locali-
zation error covariance matrix of the SRP-PHAT algorithm has been presented,
that can be used in conjuction with a Kalman tracking filter to add robustness
to scenario and environment variables. Results show that the use of the MarkIll
data yields a better precision but more false positives, which may be attributable
to non-speech acoustic sources. Improvement of the Kalman filtering and asso-
ciation rules and the introduction of a SAD algorithm, are expected to enhance
the tracking system.
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